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Some Aspects of the "Harmonic Liquid" Away 
from Equilibrium 1 

J. M. Rubi 2 and J. Bafaluy 3 

We deal with some aspects of the "harmonic liquid" away from equilibrium, 
namely, the correlation function formalism and its extension to the quantum 
domain. We have found some results similar to those for fluids subject to a 
temperature gradient. In the quantum case one obtains corrections which are 
significant at low temperatures. 
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1. I N T R O D U C T I O N  

The linear chain of harmonic oscillators, usually referred to as the "har- 
monic liquid" [1, 2], is a model which enables one to derive rigorous 
results when the system is in or away from equilibrium. As an example we 
can quote work concerning the study of the Brownian motion of a particle 
in the chain [3-5]  or heat conduction through a uniform or disordered 
chain [3, 6-8].  Our aim is precisely to analyze the harmonic chain in a 
nonequilibrium situation. To this end our first step must be to find an 
appropriate nonequilibrium stationary state and to develop the correlation 
function formalism. The stationary state can be obtained from the exact 
time evolution of an initial "local equilibrium" state in which the left and 
right parts of the chain have initial temperatures TL and TR, respectively. 
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By means of some hypothesis about the interaction matrix it can be proved 
that the state of the system tends asymptotically to a homogeneous 
stationary state in which an energy flux is present [9].  

From the stationary and time-dependent correlation functions we can 
arrive at the expressions of the nonequilibrium entropy or the dynamic 
structure factor. In this sense some previous results have been obtained in 
Ref. 10. The aforementioned program can be carried out at the classical 
or quantum levels. The quantum corrections become significant at low 
temperatures. 

The paper is distributed as follows. In Section 2 we introduce the 
model and proceed to compute some quantities that are related to 
stationary and time-dependent correlation functions as the energy flux, the 
entropy, and the dynamic structure factor. Those quantities refer to the 
stationary state we consider. The nonequilibrium entropy depends on the 
stationary temperature and on the temperature difference, whereas the 
structure factor exhibits asymmetric peaks. We then stress the fact that the 
results we obtain by means of our model are similar to those for fluids 
subject to a temperature gradient. In Section 3 we generalize our model to 
the quantum case. We analyze the correlation of positions and momenta, 
the energy flux, and the entropy and compare them with their classical 
expressions. Finally, in Section 4 we collect our main results. 

2. THE " H A R M O N I C  L I Q U I D "  AWAY F R O M  EQUILIBRIUM 

The harmonic liquid introduced in Ref. 1 consists of a linear infinite 
chain of identical particles with pure harmonic interactions. Its 
Hamiltonian is given by 

H= -~+~ Vnmqnqm ( l )  
n ~  ~ n , m =  - - ~  

where M is the mass of the particles, qn the displacement of the nth particle 
with respect to its equilibrium position and Pn its momentum. As a 
consequence of the homogeneity of the system, the force constants Vnm 
must be functions of the distance between the particles only and constitute 
a symmetric positive definite matrix. 

Translational invariance will permit us to introduce normal coor- 
dinates to diagonalize the Hamiltonian through a discrete Fourier trans- 
form. We then define the coordinates ~(O)=Z~=_~exp(-inO)qn and 
momenta ~ (0 )=  ~ =  _co exp(- inO)pn,  such that the Hamiltonian reads 

r,~ dO F 1 +lM~o2(0  ) H=J_-~--~L-~n(-O)rc(O ) ~(-0) ~(0)] (2) 
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where co2(0) = (l/M) Y~2= -o~ e-i(, m)O Vn  m gives the frequency spectrum of 
the chain. 

To analyze the dynamical properties of the system in thermal 
equilibrium we introduce the retarded Green function for the displacement 

G~m(t) --- O(t)([q~(t), qm] ) (3) 

where O(t) is the Heaviside step function, [.--,-.-] is the classical Poisson 
bracket and ( . - . )  is an equilibrium average. The Fourier transform, 
G,m(~176 = ~-oo (dt/2rO e-i'~'G~m(t) satisfies the equation of motion 

_ CSn__~m 
M~o2dnm(CO)= ~ V,kdkm(CO)q" 2~ (4) 

k = - - o o  

whose formal solution can be easily obtained through diagonalization by 
means of the discrete Fourier transform. We arrive at 

dnm( OI = J - - - J ( O )  (5) 

Notice that, as a consequence of the linearity of the equations of 
motion, in particular of Eq. (4), the Green function does not depend on the 
state in which the average is computed. The relation of G,,, with the 
dynamics of the particles follows from the integration of the equations of 
motion. The formal solution for the coordinates and momenta are 

G ( ~ ) =  -2~  
k ~ - - o o  

~n(oo )  = 2rcM ~, 
k =  --oo 

G,k(C0)[-pk(0) + iMcoqk(O)] (6) 

G~k(o) t ~  Vktqt(O)--i~op~(O) (7) 

where we have defined the Laplace transforms ~,(o)) = S~ dt e-i~ and 
/~, ( r  dte i~ Then the complete dynamics of the system is 
driven by the retarded Green function. Notice also that Gn,~(t) describes 
the position of the nth particle at t with the initial conditions qk(t = O) = 0 
and pk(t = O) = 6km/2~Z.  

Although the definition of Gnm(CO) is valid only if co belongs to the 
lower half of the complex plane, it can be analytically continued by means 
of the integral (5) to the entire plane out of the points co = +co(0) of the 
spectrum of the interaction matrix. For large values of Icot or, in other 
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words, for frequencies much larger than the maximum frequency of the 
spectrum, we can expand Gn,,(09) as 

anm(09),,~2-~o)2 IC~nm ~_ Vnm M092 + --.] (8) 

Detailed information about the dynamics of the particles can be 
obtained by integrations of Eq. (5). This can be done formally in the case 
in which the interaction matrix has a finite range (there exists a finite N 
such that V,m = 0 if I n -  ml > N). Since 092(0) is then a rational function of 
e i~ the integrand in Eq. (5) has a finite number of poles in the interval 
- ~ < Re 0 < ~ and can be expressed as a finite sum of residua. This enables 
one to obtain the form of G,m(09) near its singularities. 

In order to compute the integral in Eq. (5) let us define 
09 = So09(0) + isis where s o, s 1 ~ -  ~ 1 and 1 >> e > 0. If e = 0 the poles of the 
integrand in the region Re 0~ [ - re ,  re], I m 0 > 0 ,  form a finite set, I[~b]. 
Then if I~1 ~ 0 one has 

Onm [ SO (J)( ~} ) -~- is l l; ] 

- -  i [-exp[ In - ml [isos1 s(~)~ - -  2ef(~b)] ] 
" ~ ' ~  k SoS1 1092(~)'1 

e i l n - m l  O]  

ko~lU) ~ j (9) 

where f(~b) = I09(~b)/092(~)'1 and s(~b) = sign[092(~b)']. 
The knowledge of the retarded Green function will permit us to find 

the time evolution of the dynamic variables and their correlations through 
Eqs. (6) and (7). Let us assume that at time t = 0 the chain is in a "local 
equilibrium" state in which the right half of the chain is at temperature TR 
and the left half is at zero temperature. The system evolves in time obeying 
the equations of motion, (6) and (7). If the interaction matrix has a finite 
range and the zero frequency is not present in the spectrum, then the state 
of the chain tends asymptotically to a stationary state [9]. 

In order to find the correlations in that statinary state, we first observe 
that if f(t) is a function such that lim,~ ~ f(t) exists, then its Laplace 
transform f(09) = ~ dt e-t~'f(t) satisfies lim~ ~0 i09f(09) = lim, _~ oo f(t). We 
then study the Laplace transforms of the correlations. By using the 
convolution theorem one arrives at the stationary value of an unspecified 
binary correlation, C,m 

lim C,m(t)=i lim 09 ~ fd091Gnk(091)Fkl(09;091)Glm(09--091) 
t --* oo r ~ 0 k, l > O J L  

(10) 

where the function Fkt depends on the specific correlation we compute. The 
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integration path L is a horizontal line between the singularities of ank(O)l) 
at Im(Ogl)= 0 and those of Gmt(co- col) at Im(tnl)= Im(co). 

In order to estimate the limit in Eq. (10) we first introduce the 
expression (5) for the Green function Gnk(e)l) and close the integration 
path L by adding a semicircle in the upper half-plane. Then the integral in 
Eq. (10) transforms into 

1 ['~ dOe,(n k)o aml((D--Oo1)Fkl(O);O)l)  
2~M O_ ~ 27z ~c dc~ o~ - ~o2(0) 

(11) 

The integration contour includes the poles located at the zeros of the 
denominator, col = ___on(0). Then the general form of the limit is 

e) f~ dO lira Cnm(t)= - lim - -  
. . . . .  o 2M _,  2 ~ o ( 0 )  

2 ei(n-k)O [dm/(~(0)--r F~,(co; ~o(0)) 
k,l>O 

--  dm,(r + 09) Fk,(~O; ~0(0))] (12) 

After computing the limit on the right-hand side of this last expression one 
arrives at 

lim Cnm(t ) -- 1 fn dOe i(n-m)~ 
t~oo 87rM 2 _~ 27~ c o 2 ( 0 )  F0,(0;s(0) og(O))e i~~ (13) 

The displacement-momentum correlation Jnm=(pnqm) is a par- 
ticular case of Eq. (1 3). By using the particular form of Fkl we arrive at the 
final expression 

lim Jnm(t)=--kBT-------~R f ~ dOsin(n-m)Osign(o)2(O)')  (14) 
t~ ~ 2 _,~ 2~ 09(0) 

where k B is the Boltzmann constant. 
These results can be easily generalized to the case in which both parts 

of the chain have an initial temperature different from zero. As a con- 
sequence of the linearity of the equations, the correlations are simply a 
superposition of those generated by each part. In this case the 
displacement-momentum correlation follows from Eq. (14) after sub- 
stitution of TR by A T =  T R -  TL. The remaining correlations correspond to 
the equilibrium ones at temperature Ts = (TR + TL)/2. 

Let us study some properties of the correlation (14). The contribution 
of each normal mode, 0, has the sign of the group velocity, 
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c(O) = d[d~(O)/dO], where d is the space between the equilibrium positions 
of the particles and the asymptotic form for large distances can be obtained 
from the singularities in the integrand of Eq. (14) [11]. One obtains the 
expression 

kB AT gnm 
- - -  ( 1 5 )  

( P n q m ~  ~ 2 ~  n - - m  

where 

Knm = ~ sign [c~2(~b)"] e ' ( n -m)~  (16) 

Here the sum extends over all the values of ~b such that the group velocity 
c(~b) vanishes. One then concludes that the nonequilibrium correlation (15) 
exhibits long-range behavior. 

The displacement-momentum correlation can be related to the mean 
energy flux through the chain [-12]. One obtains 

1 u ~dO I~(0)'1 (17) ( J ) = 2 M  ~ nV"~176 -kBAT jo 2~ 
n=- -N  

Our result has the only restriction of considering interactions of finite 
range and therefore it generalizes previous analyses [3, 6, 7] in which 
nearest-neighbor interactions are assumed. Note the peculiar thermal 
behavior of the harmonic chain: the energy flux depends on the tem- 
perature difference but not on any temperature gradient. As a consequence 
the harmonic chain has an infinite heat conductivity. The physical meaning 
of Eq. (17) can be easily understood: phonons propagating from each part 
of the chain toward the opposite one contribute proportionally to their 
mean energy, ka T, and their velocity, c(O). 

An entropy can be assigned to this stationary state through the usual 
Gibbs definition, S = - - k B ( l n p ) .  Its value in terms of the parameters 
characterizing the stationary state can be easily obtained if we observe that 
this entropy is a constant of motion for the exact evolution of the system. 
Then the entropy is the same as in the initial state and can be computed 
from the equilibrium entropy SE(T). One arrives at 

s(Ts, AT)=~ [SE(TR)+SE(TL)] =SE(Ts)+ ln(1 _ )2 )  (18) 

where 2=AT/2Ts. Notice that s(Ts, AT)>sE(Ts), and therefore the 
equilibrium state has the maximum entropy for a given value of the energy. 
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It is easy now to study dynamic correlations in this stationary state. 
The time evolution of the correlations can be obtained from the time 
evolution of the dynamic variables given in Eqs. (6) and (7). As an 
example let us study the time-dependent correlation defined as 

Q.( t )  = < ( q m - - q m ( t ) ) q m - . >  (19) 

For the Laplace transform of this function we obtain 

k= - ~  2rcco2j (qkqo> + (~.~(co) (Pkqo> (20) 

where use has been made of Eq. (6). Now transforming back we get 

Q . . kB Ts  ;~ dO e i(n m)O 

. i t )  =---M-- J . 2re --co2(0) [cos(co(o)t) + i2s(O) sin(og(o)t)] (21) 

From this result we can study some properties of the diffusion of par- 
ticles through the chain. The asymptotic form of the dynamic correlation, 
valid for large distances and times, accounts for the "hydrodynamic-like" 
behavior of the motion of the particles through the chain. For large n and t 
we have 

~(O/coo)(OOot- Inl + 2n); 
Q.( t )  ~ ( 2  Dt  sign(n); 

~0t>> Inl >> 1 
(22) 

Inl >> O~o t >> 1 

where ~Oo = c/d, c = c(O = 0) being the sound velocity, and 
D = k B Ts/2Me)o.  

The self-diffusion of a particle is described through the mean square 
displacement, ( [ q . - q . ( t ) ] z > = 2 Q o ( t ) .  For long times its behavior is 
linear, with a diffusion coefficient D, whereas for finite times a frequency 
dependent diffusion coefficient must be introduced through the well-known 
relation O(o))= � 8 9  dtei~t<v(t)v(O)>. In the low-frequency limit one 
recovers the diffusion coefficient, D(co = 0 ) =  D. 

A more detailed description of the dynamics of the chain can be 
carried out through the density-density correlation function. We then study 
its spatial Fourier transform, 

f~o dx i ~, 
S(k, t) =- ~o-~e- i~X(p(x ,  t)p(O, 0) )  =a t .=  -~o (e  i~[x,(t)-x0(0)]> (23) 

where x . ( t )  = q . ( t )  + nd is the absolute position of the particle n at time t. 
That function can be expressed in terms of the correlations of positions, 
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Qn(t). Finally, its Fourier transform, the dynamic structure factor, can be 
obtained for small values of k and q = k mod(21t/d), 

4(1 -22)  71 
s (~ ,  ~ o ) =  - -  

7zc [(co_ cq)2 + 7~(1 + 2)2][(co + cq)2 + y~( 1 _ 2),,2] (24) 

where 7k = Dk 2 is the attenuation constant of sound waves in terms of the 
diffusion coefficient. The form of the dynamic structure factor reveals the 
fact that the Brillouin peaks are not symmetric, which is due to the 
presence of the factor 2. 

3. THE QUANTUM LINEAR CHAIN 

Our purpose in this section is to study the properties of the stationary 
state of the chain when a quantum description is used. One should realize 
that, as a consequence of the linear character of our system, the analysis 
carried out in the classical case applies also to the quantum case. To 
proceed it is convenient to use the Heisenberg representation of the 
position and momentum operators 

qn(t) = e i m q . e - i m  (25) 

p . ( t )  = eimp.e-aZt (26) 

Notice that these operators satisfy the same linear equations of motion 
as their corresponding classical variables. One can also define the retarded 
Green function by means of the same expression (3) where the classical 
variables are substituted again by the Heisenberg operators and the 
Poisson bracket by - i / h  times the commutator. As in the classical case the 
time evolution of the Heisenberg operators can be expressed in terms of the 
Green function. Furthermore, the time evolution of the pair correlations 
and their asymptotic limit differ from the classical case only in the initial 
equilibrium value of the correlations. 

The local equilibrium initial state can be described by means of a 
canonical density matrix, which is Gaussian. Notice that now the ordering 
of the operators should be taken into account: correlations of a given num- 
ber of coordinates and momenta can be expressed as a sum of products of 
all possible pair correlations with order preserved. Then it is also sufficient 
to study the evolution of the pair correlations. As indicated in Ref. 4 the 
difficulties arising from the noncommutative character of the operators can 
be solved by using the normal product. The equilibrium averages of the 
normal products are 
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[ hg2/kB T ] 
< :PnPm: ) = M k B  1 L e x p [ _ ~  ~- ] _ 1~ nm 

U dO i(,~ m)O Mho~(O) 
= - -  e (27) 

J ,~ 2rc exp[hog(O)/kBT] - 1 

1 1Into ( :qn qm : )  = ~ [exp[hf2/ka T] - 

U dO i(n m)O h/Mo)(O) 
= J , 2--'~ e (28) _ exp[hco(O)/kB T-] - 1 

(:P,,qm:) = 0  (29) 

At zero temperature, the normal product averages vanish. Then we 
can see that to take the normal product is equivalent to subtract the "zero- 
point" fluctuations. 

If we use these values in the asymptotic expressions for the 
correlations (13), we obtain the following results: the correlations 
(:P,~Pm:) and (:qnqm:) are one-half of the equilibrium ones at tem- 
perature TR and the (:Pnqm:) correlation is given by 

h_ ~ dO s in( (n-m)O)  sign(o92(0),) (30) 
(:P,,qm : )  = -- 2 J_~ 2n exp[hm(O)/kB TR] -- 1 

It is interesting to compare this result with the classical one given in 
Eq. (14). The energy of the particles extends homogeneously over the 
chain, but the correlations of momenta and displacements differ from their 
equilibrium counterparts. The reason lies in the fact that in the quantum 
case the correlations are nonlinear functions of the temperature. On the 
other hand, the contribution of each normal mode to the momentum-  
displacement correlation is proportional to its occupation number in the 
initial state, N(O, T)= (exp[h~(O)/kB T] - 1) 1. In the limit ho~(O)/k B T ~ 1, 
it reduces to the classical expression. 

In the case in which both parts of the chain have a nonzero initial 
temperature, the correlations can be expressed as a linear superposition of 
those originated when only one of the parts was initially at nonzero tem- 
perature. In contrast with the classical case, these correlations cannot be 
simply expressed as a function of a "stationary temperature" and of the 
difference of the initial temperatures. To simplify the result we restrict 
ourselves to the case of a small temperature difference and study the "linear 
response" of the system. Then to first order in A T =  TR-- TL one obtains 

h A_TIn dO ON(O, T ) s i n ( ( n - m ) 0 )  sign(~o2(0) ') (31) 
( :P~qm: ) -- 2 _,~ 2~ ~'-------f~ 

840/10/1-14 
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The form of this correlation follows from Fig. 1, in which we have 
plotted such a quantity as a function of the distance between oscillators in 
the case of nearest-neighbor interactions. From Fig. 1 one concludes that 
for large distances the correlation decays in the same form (15) as in the 
classical case, where n o w  gnm is given by 

h ~N(~, T) 
Knm = k--BB ~ sign(~~ (~b)") aT ei(n--m)(~ (32) 

Then the correlations depend also on the mean temperature and increase 
when increasing the temperature. Moreover, they are smaller than in the 
classical case because only those normal modes for which hco(O)/kBT<<, i 
are excited. 

We can also study the energy flux by means of the procedure outlined 
above. In this case, however, we should employ the expression of the 
momenta-displacements correlations given in Eq. (31). One arrives at 

h r ~ dO ~N(O, T) (33) <j>-- - Tsj ~ Ic~176 ~3T 

According to the definition of N(O, T), in the classical limit the energy 
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Fig. 1. The dimensionless momentum~tisplacement correlation function 
J ,  = 2 n O g o ( p o q , ) / z t T  is plotted as a function of n for k B Ts/h~o o = 0.5 in the case 
of nearest neighbor interaction. Squares and crosses correspond to the classical 
and quantum result, respectively. 



"Harmonic Liquid" Away from Equilibrium 209 
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Fig. 2. The ratio between the quantum and classical values 
of the energy flux (curve a) and the specific heat (curve b) are 
plotted as a function of the dimensionless quantity kB Ts/ho)o. 

flux reduces to the classical expression (17). In Fig. 2 we have plotted the 
ratio between the quantum and classical expressions for the energy flux and 
the dimensionless quantity kB T/hcoo. One observes that it increases with 
increasing temperature and tends to one. 

Finally, we are interested in computing the nonequilibrium entropy of 
the chain in the quantum case. Following the lines indicated in Section 2 
we arrive at the lowest order correction to the equilibrium entropy 

C(T) 
s(T, AT) = SE(T)-- - - f f~  (AT) 2 (34) 

where C(T) is the specific heat per particle. Again, with increasing tem- 
perature the specific heat tends to kB; therefore the entropy approaches its 
corresponding classical value given through the limit 2--*0 of Eq. (18). 
This fact may be observed in Fig. 2, where we have also depicted the 
specific heat. 
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4. C O N C L U S I O N S  

To clarify some of the points raised in this paper the following com- 
ments may be useful. 

We have shown that the "harmonic liquid" is a model that permits us 
to study the peculiar behavior of the correlation functions away from 
equilibrium [-13] from a Hamiltonian description. In particular, the 
existence of long-range correlations away from equilibrium is also found in 
our system. Such a behavior is related to the presence of "external forces" 
keeping the system away from equilibrium. 

Our theory can be extended to the case in which quantum effects 
become relevant. Correlation functions between coordinates and momenta  
can also be computed. Such quantities are now operators in the Heisenberg 
representation and correlations correspond to nonequilibrium averages of 
their normal products. We have found that the correlations differ from the 
classical ones. The quantum corrections are negligible in the limit 
h w ( O ) / k B T <  1. Our analysis permits us to arrive at expressions for the 
energy flux and the nonequilibrium entropy that tend to their 
corresponding classical values when increasing temperature. 
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